Engineering of Advanced Materials

Jump to navigation, content, additional informations.

Language selection

EAM

News & Events

Cluster of Excellence

Engineering of Advanced Materials

Friedrich-Alexander-Universität Erlangen-Nürnberg

Contact

Cluster of Excellence
Engineering of
Advanced Materials (EAM)

Nägelsbachstrasse 49b
91052 Erlangen, Germany
eam-administration@fau.de
18. August 2017

Slippery liquid surfaces confuse mussels to prevent their adhesion to underwater structures

Image: Clarinda Sutanto, Nanyang Technological University (NTU), Singapore

Mussels are one of the worst perpetrators of biofouling, or the unwanted accumulation of organisms on underwater structures like pipes, boats, industrial equipment, and docks. Not only do biofouling organisms like mussels threaten to slice open an unlucky swimmer’s foot, they have significant economic and environmental costs: the US Navy alone spends ~$1 billion per year on antifouling efforts, and many species are invasive pests that hitch rides to new environments on ships’ hulls. Now an international research team around EAM member Nicolas Vogel has developed a more environmentally friendly anti-attachment coat.

Two different types of slippery surfaces infused with silicone oil as a lubricant were evaluated: a very thin, silica-based and nanostructured 2D coating applied layer-by-layer (i-LBL) and a thicker, matrix-like 3D coating made of the common polymer polydimethylsiloxane (i-PDMS). After 24 hours, Intersleek 700 had ~75 mussel adhesive plaques per panel while i-PDMS had only five mussel plaques on one out of a total of fifteen panels, indicating that the mussels did not, in fact, stick well to i-PDMS.

Complete Press Release


  • Feed
  • Top

Additional information

Newsletter

The EAM Newsletter provides up-to-date information on EAM's research, programs and events.
subscription and archive